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Abstract

High-order essentially non-oscillatory (ENO) finite-difference schemes are applied to the

two- and three-dlmensional compressible Euler and Navier-Stokes equations. Practical issues,

such as vectorization, efficiency of coding, cost comparison with other numerical methods

and accuracy degeneracy effects, are discussed. Numerical examples are provided which are

representative of computational problems of current interest in transition and turbulence

physics. These require both non-oscillatory shock capturing and high resolution for detailed

structures in the smooth regions and demonstrate the advantage of ENO schemes.
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1 Introduction

In the computation of inviscid, compressible flow, the presence of infinitesimally thin shocks

readily leads to non-linear instability for traditional, unadulterated, linearly stable high-

order methods. Moreover, regions of strong gradients which have finite thickness but are

too thin for the grid to resolve may also produce non-linear instability. This is the case,

for example, for high Reynolds number Navier-Stokes computations in which the shock

thickness is much smaller than the grid spacing. The standard %urea" are either to add

explicit artificial viscosity to the numerical method or to employ an upwind-biased scheme

(which contains implicit artificial viscosity). Such approaches usually have the undesirable

side effect of loss of resolution, particularly for the small-scale structures in the smooth part

of the solution. The small-scale features are typically strongly and erroneously damped by the

artificial viscosity. This problem even afflicts the formally high-order TVD (total-varlation-

diminishing) schemes, since they must degenerate to first order accuracy at smooth critical

points [13]. Certainly, the most difficult feature to capture is the passage of small-scale

features through shock waves.

In many applications, such as typical steady-state aerodynamic CFD, the side effects of

the artificial viscosity are not particularly worrisome since the main target of the computa-

tion is the large-scale flow structure and the details of the flow near the shock are not too

significant. This is decidedly not the case, however, for numerical simulations of transition

and turbulence. Here the interesting physical phenomena occur on scales much smaller than

those of the mean flow. As noted by Hussaini and Zang [9], for incompressible flow spectral

methods have been preferred for these applications since they have the best fidelity for the

small-scale flow features. However, due to their extreme sensitivity to non-linear instability

spectral methods have yet to be used for serious investigations of transition and turbulence

in compressible flow with regions of strong gradients. (They can be used, of course, for

shock-free flows [4] and for low Reynolds number viscous flows [5] in which thick shocks are

actually resolved rather than captured.)

Essentially non-oscillatory (ENO) schemes, first introduced by Harten and Osher [6] and

Harten, Engquist, Osher and Chakravarthy [7], can achieve uniformly high-order accuracy

with sharp, essentially non-oscillatory shock transitions. The key idea is an adaptive sten-

cil interpolation (based on difference tables) which automatically interpolates in a locally

smoothest region. This strategy provides a strong inhibition towards differencing across

discontinuities. In [22, 23], Shu and Osher introduced an efficient implementation of ENO

schemes, using the same adaptive stencil idea but working directly on fluxes and a special

class of TVD hlgh-order Runge-Kutta type time discretizations. It bypasses the reconstruc-

tion and Lax-Wendroff procedures in the original ENO schemes. For multi-dimensions, this

simplification is significant, because the reconstruction in multi-dimensions becomes quite

complicated [8]. Numerical examples in [22] and [23], especially the examples of shock in-

teraction with entropy and vorticity waves, for which a good resolution for the detailed

structures in the smooth region is as important as a sharp, non-oscillatory shock transition,



indicate a good potential for ENO schemesin computing compressibleEuler and Navier-
Stokesequations.

In this paper, we discuss the coding of ENO schemes in [22, 23] to two dimensional general

geometry (via transformation) and to three-dimensional Euler and Navier-Stokes equations

of compressible gas dynamics on Cray X-MP and Y-MP. We address the practical issues such

as vectorization, efficiency of evaluating Newton interpolations, cost comparison with other

numerical methods, and accuracy degeneracy effects. We then present numerical examples

which all require non-oscillatory shock capturing and high resolution for rich structures

in the smooth regions, including two-dimensional shear flows, two dimensional and three

dimensional homogeneous turbulence, and two-dimensional shock interaction with entropy

and vorticity waves.

2 The Navier-Stokes and Euler equations

z
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For completeness, we document here the three-dimensional, compressible Navier-Stokes equa-

tions as well as the various transformations that are required for the EN0 method in curvi-

linear coordinates. In terms of the density p, the velocity fi = (u,v,w) _, the pressure p, and

the internal energy E, the Navier-Stokes equations read

4, + _(4)=+ g(_)_+ _(4)== _(_)=+ _(fi)_+ _'(4)= (i)

where

= (p,pu,p_,p_,E)', t'(_) = _4 + p(0,1,0,0,u)'
g(fft) =Vffl+p(O,O,l,O,v) t, h(q) =wffl+p(O,O,O,l,w) _ (2)

and

_(_)
_(_)

with the components of the viscous

";'11

T2i

T31

T22

_2

T33

= #(O, rn,T21,'r31, al) t,

: _(0, T12, T22, T32, a2) t,

= # (0, "/'13,T23, "r33, a3) t,

stress tensor given by

4 2 2

= I"12 = uy Jr v=,

=- I"13 -- _z _- Wz,

4 2 2

7"23 _ "Uz -11-t/lg,

4 2 2

(3)

(4)
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and

Orl =

_r2 _--

0"3

urn + vrn + wv_a +

uv21 + vT_2 + wr2a +

uTal + vTa2 + wTaa +

1

(3"- 1)Pr (c2)v'

1

(3"-l)Pr' '_'j''

(5)

Also,/_ is the viscosity, 3' is the ratio of specific heats, Pr is the Prandtl number, and

1 2 v 2
P = (9'-l)[S-_p(u + +w')],

c_ 3'P
P

H- E+p (6)
P

For implementing ENO schemes with characteristic decompositions, we need the expressions

a{ ag ag
of the eigenvalues and the right and left eigenvectors of the Jacobians 04' 04' 04" The

0F
eigenvalues for _ are u - c,u,u,u,u + c. Its right eigenvectors are the columns of

R

1 0 0 1 1

u-c 0 0 u u+c

v 1 0 v v

w 0 1 w w

1 2 V2H-uc v w _(u + +w 2) H+uc

(7)

and the left eigenvectors are the rows of

(b2 Jf" u) (bl,l/,: 1) _bl, 0 _blW bl )

R_ 1 = 1 -2v 2 0 0-2w 0 0 2 0 ,

2(1 -- b2) 2bltt, 2blV 2bl"W -261

(b2 _ u._) _(bl u _ {) _bl, U _bl,,tD 51

(8)

with

3"--1
bl --

C2 '

1 _. v_ zv2)bl"b2 = :(_ + +
Z-

(9)

ag
The corresponding expressions for _ and _-_ are apparent.
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The Euler equations can be obtained from the Navier-Stokes equations by setting _ = 0.

The equations for two-dimensional problems are equally obvious.

In the two-dimensional case, the transformation

m = x(_,_/), y=y(_,Tl) , (I0)

enables us to treat non-uniform grids or mappings into non-rectangular domains. The Navier-

Stokes equations become

q, + fe + g,7 = re + _"_, (11)

where

t = J-'[u_+v(o,_.,_,u)'],
g = J-_[v_+p(o,_.,_,v)'],

= j-_(_.v+_),

= _(0, 7"11,r21,al) t,

a" = _(0, r1:, T2_,a2)_, (12)

with

4 2

4 2

a_ : u_'_ -F v_'_ -F

and

ll )Pr [('(c_)((_- + ,.(c:).],
=

('i )Pr [_u(c:)' + %(c:)']' (13) i

U = _.u+_vv,

The eigenvalues for _qq are U - c + _, U, U, U + c _ ÷ (_; the right eigenvectors are

the columns of

1 c 1 1 ]

,,- _.c -L ,, ,,+_.c

H-_c -#_u-F#.v ½(u _+v _) H+e_c

(15)
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the left eigenvectors are the rows of

R-' i 2(L=- -2L 2L o
= _ 2(I - b2) 2b,u 2b:v -2_ '

where b: and b2 are defined in (2.8); and

_v

a_
We again forego the explicit prescription for _qq.

(16)

(17)

3 Implementing the ENO schemes

This section should be read in conjunction with [22, 23] for notation, terminology and other

details of ENO schemes based on fluxes and for TVD time-discretizations of Runge-Kutta-

type. Here we only summarize several key steps of the algorithms and address practical issues

such as vectorization, efficiency, cost comparison and the reduction of round-off errors.

The ENO procedure is applied only to the convection part, i.e., the left-hand-side, of

Eq (1). The diffusion righthand side of Eq. (i) is approximated by the standard centered

differences. It is also possible to use ENO-type adaptive stencil interpolation to approximate

the diffusion terms, but we have not observed any significant differences in our numerical

tests (typically with small physical viscosity v). Besides simplicity, centered approximations

also seem more natural for diffusion terms.

We now summarize the key steps of the algorithm:

(1) The time marching is implemented by a class of TVD Runge-Kutta type methods [22].

For example, the third order case is

`:(1)= + at£(`:(o)),

1 _.: 1 _£(`:(I)),`:(2) = 43__`:(0)+ :q( ) 4- _"

2_._ 2 Ad,(`:(_)),`:(_) = 1,:(o) + 5q( ) +

(18)



where I_, is the numerical spatial operator approximating the spatial derivatives in Eq. (2).

This class of Runge-Kutta methods is labeled TVD because it has been shown [22] that it

does not increase the total variation of the spatial part under a suitable CFL restriction.

Also notice that for the third order case, Eq. (18), only three storage levels (two for 4, one

for g,) are needed, since (_(2) can overwrite _(1) and (_(3) can again overwrite (_(1).

(2) We thus only need to consider the spatial operator

(19)

The last three terms are approximated by standard second-order or fourth-order centered

differences. We use an ENO scheme based on fluxes; hence the first three terms can be

approximated dimension-by-dimensioni for example, when approximating -f'((_)=, Y and z

are fixed. The core of the algorithm is then a one-dimensional ENO approximation to, e.g.

-g(a),.

(3) Since f'(_)is a vector, we can approximate -f'(_)= either component by component,

or in (local) characteristic directions. In the former case, to obtain non-linear stability by

upwinding, we write

_'((_)= f-(_)+ f-((_), (20)
with

_(n)
14

= _(f((_)+_), (21)

where,_= max(I_,l+ c)isthelargesteigenvalueinabsolutevalueoftheJacobian

along the relevant m-line. The decomposition in Eq. (20) guarantees that _ has posi-

tire/negative eigenvalues; hence upwinding (to be discussed later in this section) is the same

for aU components. For characteristic decompositions, we take Ai+I/_ to be some average

Jacobian at m_+l/_, e.g. the arithmetic mean

or

Aj÷i= (22) [
aq (_=½((_+(_+_)

(23)A j+ ½ £/Ct[ -. -.Roe'
_q=qj+½

.(Roe)
where q_+½ is the Roe average of _j and qj+l [17]. We then use the lefteigenvectors

R#+II2-_ in Eq._(8)-or Eql (16) of A#+_I2 to projectall relevantquantities(differencesaround

a:#+ll_)to the localcharacteristicfields.A scalarENO algorithm can then be applied, and

the resultprojected back to component space by Ri+zl_.in Eq. (7) or Eq. (15).
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(4) We finally describe the implementation of the scalar ENO approximation of -f(q)=.

It is written as a conserved flux difference

1 .

-f(q)xl===j _ -_--_z(fj+½ -/j_½), (24)

where the numerical flux fj+l/2 approximates h(zj+V_ ) to a high order with h(z) defined by

f(u(x)) = _ g*-'_ h(_)d_. (25)

It is pointed out in [23] that we do not need to construct h(z) explicitly: we simply use the

difference tables of f(u(z)). If the (undivided) differences of f(u(z)) are defined by

f[j,O] = f(uj),

f[j,k] = f[j+l,k-1]-f[j,k-1], k=l,...,r (26)

where r is the spatial order, then

f j+½ = _ c(i - j,m) f[i,ra], (27)
rn -_ O

with i being the left-most point in the stencil used to approximate fj+I/2, and c(s, rn) being
defined by

i s+m s+m

c(s,m)= (m+ 1)! II (-p). (2s)
H

p=s

The small, constant matrix c is computed once and stored.

The adaptive stencil determined by the choice of i, the left-most point in the stencil used

to approximate fj+l/2. We start with i = j or i = j + 1 according to the (local) wind

direction (upwinding), and then apply the following

if (abs(f[i,k]).gt.abs(f[i-l,k])) i=i-1 (29)

for k = 1,...,r.

Remark 3.1 The code is written in such a way that all the major loops are vectorized by

default of Cray Fortran. To vectorize Eqs. (27)-(29) we can either repeat (29) r times (for

fixed r only) or introduce a temporary one dimensional storage for i to put the short loop (29)

outside the long loop (27)-(29) for j. To vectorize the characteristic decompositions we have

to introduce one dimensional temporary storage for the local projection on characteristic

fields at each z¢. Since we only vectorize the innermost one-dimensional loop, we need just

17 three dimensional units (10 for two components of q, 5 for _,, and 2 work units) for three

dimensional problems using third order schemes.



Remark $.2 For our current implementation, the componentwise ENO scheme takes

around 4.5 times as much CPU time as a centered finite-difference scheme with the same

order of accuracy. A factor of two is due to the flux splitting, Eq. (20). Instead of just

computing f'(_)_ we are computing f+(4)2 + f'-(q)_; hence the work is doubled. This is

the price to pay for implementing upwinding techniques to achieve stability. Another factor !

of two is due to the adaptive stencil procedure, Eq. (29): when these "if" statements are !

removed, the code runs twice as fast. It seems odd that these "if" statements account for so

much CPU time since they are all vectorized. The main reason is that since the pattern is not

uniform from point to point, gathering and scattering are activated by Cray Fortran. These

procedures are very slow on the Cray. A similar slow-down also exists for TVD schemes.

ENO schemes using characteristic decompositions take more CPU time: ENO-LF and ENO-
Roe with entropy fix (see [23] for definitions) take about 3 and 1.7 times, respectively, as -

much CPU time as componentwise ENO schemes. Notice that ENO-Roe is faster than

ENO-LF because it does not use a flux splitting. See [23] for more details.

Remark 3.3.. We use undivided differences, Eq. (26), and prestored local matrix c, Eq.

(28), to reduce cost and to reduce the effect of round-off errors.

in a4 Transition Free Shear Layer

The numerical exarnples were chosen to illustrate the ENO method for problems in transition

and turbulence. We consider flows with gradients which are readily resolved by the grid -

shocks are either absent altogether or else sufficiently broad (due to low Reynolds number)

that the usual spectral method gives stable results. Comparisons of the intrinsic resolution

can therefore be made between the spectral and ENO methods. We then take strong shock

cases to illustrate the advantage of non-oscillatory high-order methods.

Unless otherwise indicated, third-order ENO with the thirdlorder Runge-Kutta time dis-

cretization (18) and fourth-order centered differences for the viscous terms are used. Notice

that the third-order ENO [23] is actually fourth order in smooth, monotone regions; hence

for problems with isolated critical points it is fourth-order in L1 norm sense. We use, as

in [23], the notations ENO-LF (Lax-Friedrichs), ENO-Roe and ENO-Com (componentwise).

of theThere has been considerable recent interest in the physics compressible free shear

layer and numerical simulations have furnished several interesting results. The numerical

TVD [24, 12], fourth-ordermethods employed have typically been second-order MacCor-

mack [25, 16]_or fourth- or even sixth-order compact [10, 19, 2]. Atkins [1] and Sandham

and Yee [20] have made detailed studies of the performance of TVD schemes on this prob-

lem. The latter also made comparisions with second-order MacCormack results. Carpenter,

et al. [2] have compared third-order upwind, fourth-order MacCormack and fourth-order

compact methqds.

For the particular 2-D examples studied in the present paper, the mean flow is given by

=

Z



1

the hyperbolic tangent profileuo = tanh(y), Vo - O, and po = _--M-_,where Moo isthe ratio

in the limit y --*too, of the freestream velocityto the sound speed, and periodic boundary

conditions are enforced in the streamwise (x) direction. The velocity is non-dimensionalized
OUo

by the freestream velocity, uoo, lengths by half the vorticity thickness 8_ = 2Uo/-_y , the

density by the freestream density, poo, the temperature by the freestream temperature, Too,

and the pressure by poouoo. The Reynolds number Re = Uo6,_poo/l_oo. The viscosity # is

prescribed through Sutherland's law with a reference temperature of 520°K and the Prandtl

number is taken to be 0.7. This example is for the temporally evolving free shear layer. A

forcing term is added to the Navier-Stokes equations in order to make the assumed mean

flow a steady solution. The computational domain is (0, 2_r/ct) × (-oo, oo), where c_ is a

specified wavelength.

For this problem we present comparisons o£ ENO with both explicit and compact centered

difference schemes and with spectral methods. The explicit central difference methods use

3 points for a second-order approximation and 5 points for fourth-order. The compact

difference scheme uses a Pad6 approximation with 5 explicit points and 3 implicit points

(see [10]). It is formally sixth-order accurate at all interior points, and at points adjacent to

the boundary, but reduces to fourth-order accuracy at the boundary itself. (The sixth-order

compact scheme used by Lele [10] reduces to fourth-order accuracy at points adjacent to

the boundary and third-order accuracy at the boundary itself.) For the spectral calculation

a Fourier expansion is applied in z and the Cain transformation [3]

y =-L cot(q) (30)

is used in the y direction; L is a stretching parameter which is taken between 4 and 10.

This permits the use of cosine (for p, u, and e) and sine (for v) expansions of the dependent

variables in the _/direction.

4.1 Linear Instability

For the smooth problem we consider first the evolution of a small perturbation, with stream-

wise wavenumber a = 0.4, from the mean flow at Moo = 0.5 with a Reynolds number of

100, and the usual 3' = 1.4. The shape of the perturbation is given by the fastest-growing

eigenfunction of the linearized Navier-Stokes equations at the specified wavelength. The

amplitude of the perturbation was chosen so that its transverse velocity at V = 0 was 0.1%

of the freestream velocity. The growth rate for this particular case was 0.127454941. (This

eigenvalue problem was solved by a spectral linear stability code [11].) For such small am-

plitudes the non-linear code should produce linear growth of the perturbations for small

times. Table 1 shows the growth rates produced by central difference methods and compact

methods after 10 time-steps with a time-step of 0.01. (The measured growth rate was taken

to be a = [log E(t) - log E(O)]/(2t) where E(_) = [Iu - u0[l_,, + Ilvll_,.) In these examples a

highly-resolved discretization (with 128 points) was employed in y and the specified method

9



method Nx = 8 Nx = 16 Nx = 32

2nd-order central

4th-order central

4th-order compact

6th-order compact

-4.26(-2)
-4.92(-3)
2.15(-4)
1.12(-5)

-6.26 (-3)
-1.83 (-4)
1.25 (-5)
1.9o (-8)

-1.24 (-3)
-1.35 (-5)
5.00 (-7)

-2 (-8)

Table 1: Linear Growth Rate Errors for Central-Difference and Compact Schemes at t = 0.1

m_ N_ =8 N_= 16 N_=32 Nz=64

2nd-order ENO -4.30(-2) -6.30(-3) -1.14(-3) -4.90(-4)

2nd-order ENO-2 -3.83(-2) -2.01(-3) -8.28(-4) -5.58(-4)

3rd-order ENO -1.62(-2) -1.05(-3) -1.48(-4) -9.85(-5)

3rd-order ENO-2 -8.77(-3) -3.38(-5) -2.20(-6) -2.51(-6)

4th-order ENO -4.96(-3) -1.88(-4) -1.54(-5) -9.88(-6)

4th-order ENO-2 -4.21(-3) -1.28(-5) -1.39(-5) -1.78(-5)

Table 2: Linear Growth Rate Errors for ENO Schemes at t = 0.1

was applied in x with the streamwise resolution as noted in the table. The table thus pro-

vides the accuracy achieved as a function of the method and the number of grld-points per

wavelengthl (Even for Nx = 4, the error from a spectral discretization in x is already smaller

than i0"'.)

Simi!ar results for ENO methods of second-, third-, and fourth-order are given in Table

2. In these cases the ENO method was also applied in y, again with 128 points used in

this direction. Again, the intent was to isolate the discretization errors in x. Except for

the Nx = 64 cases, the results are as one would expect: the accuracy increases with the

number of grid-points and with the order of the scheme. (The unexpected deterioration of

the convergence rate for the finest grid is addressed below.) A comparison of the fourth-

order central-difference results from Table 1 with those of the 3rd-order ENO from Table 2

indicates that the ENO results are slightly less accurate. This is to be expected since one

anticipates that in most of the flow this ENO stencil reduces to the fourth-order central one,

and where it is switched to one-sided it will lose one order in accuracy.

..... Notice that the improvement in accuracy obtained from going from 32 to 64 streamwise

.... grid:points is less than expected. For the Central-difference schemes this occurs on the 10 -6

lcvei I whereas it occurs an order of magnitude or more earlier for the ENO schemes. (This is

even more apparent in the ENO results at later times, as evidenced by the data in Table. 3.)

This is due to time-differencing and linearization errors for the central difference methods,

whereas it is caused by the loss of accuracy when the stencil switches for the ENO method.

The results labelled by "ENO-2" in the tables are computed by using a factor of 2 to multiply

10



method

2nd-order ENO

2nd-order ENO-2

3rd-order centered

3rd-order ENO

3rd-order ENO-2

4th-order centered

4th-order ENO ....

4th-order ENO-2

5th-order centered

N_=8

-4.26(-2)
-3.86(-2)
-4.22(-2)
-1.59(-2)
-7.31(-3)
1.04(-3)

-4.95(-3)

-4.19(-3)

-4.92(-3)

N, = 16

-6.37(-3)
-1.43(-3)
-6.21(-3)
-1.16(-3)

1.55(-5)
3.55(-5)

-2.53(-4)

-5.03(-5)

-2.14(-4)

N_=32

-1.26(-3)
-8.33(-4)
-1.23(-3)
-2.41(-4)

-2.52(-5)
_3.14(-5)
-9.35(-5)

-3.12(-5)

-4.63(-5)

N_ = 64

-6.20(-4)
-5.72(-4)
-5.89(-4)
-1.89(-4)

-3.49(-5)

-3.56(-5)
-7.79(-5)

-2.92(-5)
-4.o9(-5)

Table 3: Linear Growth Rate Errors at t = 1.0

either the first or the second abs term in Eq. (29), depending upon whether i is greater

than the left-most point in the centered stencil or not. The effect is to bias the scheme

towards a centered stencil in smooth regions. This modification of ENO is discussed in

detail in [21], accompanied by numerical tests on smooth and shocked cases, in response to a

recent discovery by Rogerson and Meiberg [18] about some accuracy degeneracy phenomena

of ENO schemes. From the table we can see that "ENO-2" is in most cases comparable in

accuracy with the corresponding centered schemes, while ENO is usually one order lower, as

expected from the (unnecessary) switching of stencils in smooth regions.

4.2 Mach 0.5 evolution

Next, we present a comparison of these methods for a fully nonlinear problem. The previous

results were just basic calibration tests (for all the methods). The real purpose of numerical

simulation codes is to explore nonlinear fluid dynamics. The next example, therefore, is

a simulation of vortex roll-up and pairing at M_¢ = 0.5. The initial conditions consist of

the mean flow plus two linear eigenfunctions: the fundamental with wavenumber al -- 0.4

and amplitude e t = 0.01 and its subharmonic with wavenumber a, = 0.2 and amplitude

eo --- 0.0001. (In this case the computational domain in x is doubled from that of the

previous example in order to accommodate the subharmonic.) The initial phases (judged by

the location of the maximum of the normal velocity perturbation at y = 0) were exactly out

of phase, a choice which ensures that vortex pairing will occur.

Figure 1 presents the evolution of the vorticity thickness for third-order ENO on grids of

size 322, 642, and 1282 and compares these results with those of a 1282 spectral calculation.

(An analysis of the spectral coefficients of the latter coefficients, along the lines discussed

in [26]_ indicates that the spectral result is accurate to better than 4 significant digits until

about t = 125, but that thereafter its accuracy deteriorates rapidly as the vortex roll-up

produces scales, particularly in the streamwise direction, that are too small for the grid.)
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The ENO result is clearlyconvergingto the proper answer.A similar comparisonis presented
for the sixth-order compact schemein Figure 2. The convergencehere is more impressive
than for the ENO scheme,but that is to be expectedfor this smooth flow. Curiously, the

spectral coefficients for the compact scheme suggests that it is the transverse resolution which

is most stressed by the roll-up.

Figure 3 summarizes, for the third-order ENO method, the evolution of the lowest 4

Fourier harmonics as represented by the quantity

oo

Ek =/_oo([_k]_ + Igkl2)W(y)dy (31)

where

a. [2"q" q(z, y, t)e_,_..:dz (32) k(u,t) = Jo

is the k th streamwise Fourier coefficient of the variable q and

1 lul _< y= (33)w(y) = e-till-,,°)' lul > Uo

is a weight function used to confine the region of integration to a finite size. (We used

y_ - 50.) Once again, the numerical results are indicative of convergence. On a 322 grid

the ENO results are perceptibly different from the highly resolved results even for the k = 1

mode. On a 642 grid the worst relative results occur for k = 3. This mode happens to be

the most sensitive of the 4 to nonlinear interactions. At the start of the calculation only the

k = 1 and k = 2 modes had non-zero amplitudes. The k = 2 mode is initially forced by

the self-interaction of the k = 2 mode, which is the dominant mode for the first part of the

calculation. The k = 3 mode is initially forced by the interaction between the k = 1 and

k = 2 modes and it is here that the largest errors occur. One heartening result is that the

k = 1 mode - the subharmonic - is tracked reasonably well. Atkins [1] observed that there

could be appreciable spurious generation of this mode by a second-order TVD method.

Similar data are provided in Figure 4 for the compact scheme. The results for these

low-orde r modes are already graphically indistinguishable from the 1282 spectral results on

a 642 grid for the compact scheme. This, too, is understandable since the compact scheme

was shown in Table 1 to have an accuracy of better than 1 part in 104 with 8 points per

wavelength, and even the mode k = 4 has 8 points per wave.

We close the Mach 0.5 results with a plot, in Figure 5, of the pressure contours at

= 150 for the ENO method on various grids and for the high-resolution spectral method.

The similarity of all the results is apparent.

i

i

i
i

4.3 Mach 0.9 evolution

The rationale for the ENO method rests primarily on its behavior in the presence of shocks.

Indeed, typical central-dlfference and spectral methods have substantial difficulty for this

12



compressiblefree layer problem at freestreamMach numbersabove0.70. For this example
we chooseM,o = 0.9 and initial conditions consisting of the mean flow plus two linear

eigenfunctions: the fundamental with wavenumber al -- 0.3 and amplitude e t -- 0.01 and

its subharmonic with wavenumber a, = 0.15 and amplitude eo = 0.001. Furthermore, the

stretching parameter for the ENO method is here chosen to be L = 10 to provide better

resolution near the shock waves which eventually develop.

The evolution of the pressure field for this case is depicted in Figure 6. These plots

_e taken from a computation based on the sixth-order compact scheme. (A 1282 grid was

used from t = 0 to _ = 75, a 256 grid from t = 75 to t = 100, a 512 x 192 grid from

t = 100 to t = 106.25, a 768 × 192 grid from t = 106.25 to t = 112.5, and a 1024 × 192

grid from t = 112.5 to t = 137.5. Spectral interpolation was employed for the requisite grid

refinements.) By _ = 100 vortex pairing has already occurred. The vortex is centered in the

plotting frame and stagnation points are located on the vertical mld-plane at the streamwise

edges of the plot. As discussed, for example, by Lele [10], the flow expands away from the

stagnation points as it goes around the vortex and compresses as it returns to the stagnation

point. At sufficiently high Mach numbers and for sufficiently strong vortices the compression

occurs via a shock wave. Shortly after t = 100 in this case a pair of shocks develop - these

are the so-called "eddy shocklets" [24, 10] - and they grow steadily stronger as the flow

evolves. These shocks are not the only small-scale feature of the flow, however. As noted

by Sandham and Yee [20], the flow also develops a very thin region of high strain near the

stagnation points.

Although there is a physical viscosity in the flow (in this case the Reynolds number

Re = 100), the thicknesses of the shock and/or high strain regions may eventually become

too small for a central difference scheme to handle. Such is the case here even on a 1024 × 192

mesh. In the presence of unresolved gradients central-difference schemes develop oscillations

which lead to negative temperatures and an abrupt halt to the calculation.

Indeed, computations with both the spectral and the sixth-order schemes on 322 , 642

and 1282 grids develop severe oscillations and come to a crashing halt between t = 105

and t = 110. Somewhat curiously, as noted by Sandham (1990, private communication),

for both methods the oscillations develop first not in the vicinity of the shock but in the

region of high strain. This is particularly apparent in Figure 7, which shows the evolution of

the pressure for the spectral method calculation (in which a 1282 grid was used from _ = 0

to t = 75, a 256 x 128 grid from t = 75 to t = 100, a 384 x 128 grid from t = 100 to

= 106.25, a 768 × 144 grid from t = 106.25 to t = 109.375, and a 1024 x 162 grid from

t = 109.375 to t = 112.0). The computation halted shortly after t = 112 due to negative

temperatures caused by severe oscillations. Figure 8 is a blow-up of the central region at

= 112. Note that there are no oscillations apparent in the vicinity of the shocks. Note also

that the oscillations are predominantly in the x direction. Indeed, an examination of the

spectral coefficients reveals that the y direction is quite well-resolved. The price of resolving

these regions with a non-dissipative central difference scheme can easily be excessive, as the

present case indicates.
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The vorticity thicknessof the ENO and sixth-order compact methods are provided in
Figures 9 and 10, respectively. The results for ENO method demonstrate convergence - the

vorticity thickness on the 1282 grid is virtually coincident with the compact method result.

The errors for the ENO method for this Mach 0.9 case are substantially larger than for

the Mach 0.5 case (see Figure 1). However, this is due primarily to the difference in the

stretching parameter. For the Mach 0.9 ENO calculations, a weaker transverse stretching

was used to afford finer resolution in the vicinity of the shock.

Results for the lowest 4 Fourier harmonics for the two methods are given in Figures 11

and 12. The performance of the two methods for this diagnostic mimic that for the vorticity
thickness.

All of the results reported thus far have been for the ENO method using the characteristic

decomposition. As noted at the end of Section 3, componentwise ENO is simpler to program

and is less expensive. Figures 1:] and 14 compare the two versions at _ = 125 and t = 150,

respectively. The componentwise results suffer in two respects. First, the shock is more

diffuse. In fact, at t = 125 the shock is barely visible. Second, there are appreciable spurious

oscillations. Their character is quite different from the oscillations which afflict the compact

and spectral results. They are far less regular but are held in check by the nonlineariy

stable adaptive stencil. Nevertheless, the small-scale flow features of the componentwise

ENO results are quite unreliable. One must hesitate to use this method for applications

in which the small scale features are of particular interest, such as transition to turbulence

problems.

A comparison of the characteristicwise ENO results at t = 125 with those of the compact

scheme (Figure 6) reveals that even on a 1282 grid the ENO method produces a numerical

shock thickness which is much larger than the actual thickness for this viscous problem.

Moreover, the absence of a shock on the 642 grid appears due t0 the delayed flow evolution

(presumably caused by the inherent viscosity of the ENO method) that is apparent in Figure
9.

We conclude the results for this problem with Figure 15, which shows the long time

evolution of a 642 characteristicwise ENO calculation based on the Euler equations (but

starting with the same initial conditions as the Navier-Stokes calculation above). Even on

this coarse grid, and without the aid of any physical viscosity, the ENO method exhibits

solid shock-capturing behavior. The numerical Solution shows no sign of nonlinear instability

and spurious small-scale oscillations are absent.

|
E

Z
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5 Isotropic Turbulence

In [15], Passot and Pouquet simulated two-dimensional, compressible, isotropic flows in the

turbulence regime using a Fourier spectral collocation method. They identified three basic

regimes: shock-free, weak shocks, and strong shocks. Subsequently, Erlebacher, et al. [5]
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developeda theory of compressibleturbulence that containedamore refinedcharacterization
of the different regimesof compressibleturbulence and containeda usefulparametrization of
initial conditions that permitted precisepredictions of the asymptotic turbulence state. The
direct simulations performedin thesestudieswere limited to quite low Reynolds numbers,
particularly in the shockregimes.Gibbsoscillationsarosewheneverthe shocksweretoo thin
for the grid to resolve.

Here we perform simulations of compressible isotropic turbulence using both spectral

and ENO methods. The boundary conditions are periodic in all directions, the velocity

is normalized by its initial root-mean-square value, the density and the temperature are

normalized by their mean values, the pressure as for the free shear layer problem, and

the viscosity is taken to be constant # = 1/150. We compute a low Mach number case

where the shocks are weak and the spectral method can resolve the full structure with 2562

points. Comparisons between different ENO schemes and between ENO schemes and spectral

methods are furnished for both large-scale and small-scale flow features

In Figure 16, we show the density and vorticity contours at t = 1 computed with the

spectral method using 2562 points. This can be considered to be a resolved solution. Still,

the vorticity, which involves derivatives for the numerical solution, shows some oscillations.

In Figures 17 and 18, we show the density and vorticity contours at t = 1 for the spectral

method and the third order characteristic ENO-LF, respectively, using 642 and 1282 points.

We can see that the ENO scheme produces non-oscillatory results but the spectral method

gives noticeable oscillations. For this example, the component ENO-com produces results

similar to those of ENO-LF.

In Figures 19, 20 and 21, we show the time history of the average Mach number, the

maximum Mach number, and the mininum divergence, for the spectral schemes and the third

order ENO-LF. We can see the convergence of ENO schmes for the former two but not the

latter.

In fact minimum divergence is achieved exactly inside the transition regions: to resolve

it, one has to resolve the full transition regions. The idea of using high order shock capturing

methods is to resolve essential features in the smooth part of the flow without fully resolving

the transition regions or shocks. An important topic of numerical tests is to verify whether

this is achieved. For this example we indeed achieve this as indicated by Figures 19 and 20.

We then compute a three-dimensional version of this problem. We present in Figure

22,23,24 the time history of average Mach number, maximum Mach number and minimum

divergence of velocity. These have characteristics similar to their two-dimensional coun-

terparts. The minimum divergence time history strongly suggests the presence of three-

dimensional shocks. However, the grid resolution is not sufficient to clearly bring them out

by simple flow visualization.
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6 Shock Interaction With Entropy Waves

For shock interaction with weak entropy and vortic!ty waves, some qualitative pictures have

already been presented in [23, 14], which are similar to those obtained by shock-fittlng

methods [27]. Here we want to do some quantitative studies of wave amplification factors.

This is relevant to the issue raised in Example 1: if the shock or the rapid transition region is

not completely resolved, can we still resolve smooth information passing through the shock,

such as the amplification factor when waves pass through a shock. For this purpose we take

an entropy wave with a small amplitude so that the linear effects dominate and a comparison

with linear amplification factor can be made. For third-order ENO with 150 x 20 grid points

(about 20 points per wavelength), we can already resolve the amplitude amplification factor

to within 5%. This compares very well against second order MUSCL type TVD scheme with

the same number of grid points which can only resolve the amplitude amplification factor

with an error six to ten times as big. Similar comparisons in the one-dimensional case were

also made (via graphs) in [23]. We remark that this quantitative comparison is important in

this case, since a major difference between ENO and TVD schemes is that the latter "clips"

the critical points. If we only compare contours we will not see such sharp differences.

The details of this problem are as follows. For a pure shock with Mach number M moving

to the right, we add an entropy Wave

p = pre-_ c°'_" (34)

where fir = k_(x cos ar + y sin at), to the density field at the right of the shock. Here c_r is

the angle of the vorticity wave with the shock, /_. controls the number of waves, and e, is

the scaled amplitude. In order to enforce periodic boundary conditions in the y direction,

we take the computational domain to be [0, 1] x [0, _ ]k, tin a,. "

The first phase of this computation is aimed at reducing the transients that arise from

the discrete ENO approximation to the moving shock wave. We run the scheme until the

shock moves from x = 0.2 to x = 0.8, then shift the data leftwards so that the shock is again

located at x = 0.2, and repeat this process six times. Then for each fixed x to the left of

the shock, we perform a Fourier analysis on the entropy to find the amplitude el, where (34)

with the the subscripts "r" replaced by "1" denotes the entropy wave to the left of the shock.

The resulting amplitude et is then averaged over an x-interval between the wave front and

the shock, with a length at least one full wavelength.

The computed amplification factors _ together with the linear prediction results, for

Mach 3, a_ = 30 °, _ = 0.02, k_ = 15, are listed in Table 4. The 6th-order ENO method

refers to a scheme which is sixth-order in space, and third-order (Runge-Kutta) in time,

with a reduced CFL number of 0.2. We can observe from Table 4 that, especially for coarse

grids, higher-order methods indeed produce much more accurate amplification factors than

low-order methods. It seems, however, that we cannot reduce the error below a certain

threshhold around 2%. Again, round-of effects might be playing a role since the amplitude

of the wave is far smaller than the shock strength.

=
=

[
i
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method
2nd-order MUSCL

3rd-order ENO
6th-order ENO

3rd-order ENO-2
6th-order ENO-2

Nx = 50

-86%

-47%

-21%

-47%

-8.43%

N. = 100

-66%

-14.5%

-8.63%

-5.98%
-6.96%

N_ = 150

-42%

-6.86%
-4.74%

-1.82%
-2.38%

Table 4: Relative Errors in Amplification Factors

7 Concluding remarks

ENO schemes based on fluxes and Runge-Kutta type TVD time discretizations, introduced

in [22, 23] are implemented on Cray 2 supercomputers. Vectorization is realized for all

inner loops. Currently the code runs 4.5 times slower than the classical centered difference

schemes of the same order: a factor of 2 is due to the upwind flux splitting f = f+ + f-,

another factor of 2 is due to the adaptive stencil process. If characteristic decompositions are

used, the CPU time is increased by another factor of 1.7 to 3. General geometry is handled

by transformations. Numerical examples include 2D and 3D homogeneous turbulence, shear

flows, and shock interaction with vorticity waves. ENO schemes show their advantage when

the solution contains both strong shocks and detailed structures: with a relatively coarse

grid, where shocks or rapid transition regions are not fully resolved, quantities like mini-

mum divergence cannot be resolved, but the numerical result is still stable and large-scale

quantities such as Mach number and amplification factors can be well resolved.
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Figure 1. Evolution of the vorticity thickness for the Mach 0.5 free shear layer problem using

the 3rd-order ENO scheme.
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Figures 16: density (left) and vorticity (right) contours for the spectral scheme with 2562

grid points.
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Figures 17: Density (left) and vorticity (right) contours for the spectral scheme with 642

(top) and 128 * (bottom) points.
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Figure 18: Density (left) and vorticity (right) contours for the third order ENO-LF with 642

(top) and 19.82 (bottom) points.
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Compressible Turbulence

ENO 3rd order, 3D, characteristic
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Figure 22: Time history of average Mach number, 3D.
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Time history of maximum Mach number, 3D.
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Figure 24: Time history of minimum divergence, 3D.
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